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with NOAA in situ gas chromatographs (excluding Cobra NA, Altair, and the
NASA POSIDON mission).

Figure 1 Airborne in situ gas chromatographs of NOAA. Figure 4 Vertical profiles of trace gases measured from UCATS in ATTREX.

1. Introduction: NOAA scientists started in situ airborne measurements of two strong
ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA
ER2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for
Atmospheric Trace Species (ACATS & ACATS-2). This instrument was followed by ACATS-4;
a balloon-borne GC version: the Lightweight Chromatograph for Atmospheric Trace
Species (LACE); PAN and other Trace Hydro-halocarbon Experiment (PANTHER) for
shorter-lived gases mainly in the upper troposphere; and one Unmanned Aircraft Systems
(UAS), called UAS Chromatograph for Atmosphere Trace Species or UCATS (Table 1).

with climate change. Table 2 lists each major mission and describes its date(s) flown,
the platform used, the NOAA GCs operated onboard, and the gases and types of gases
measured.

4. Summary: Our airborne measurements help us understand transport on trace
gases measured by our ground network, mixing processes, calculate atmospheric
lifetimes of gases destroyed in the stratosphere, and examine the vertical
distribution and trends of trace gases in the upper troposphere and lower
stratosphere.

3. Recent Results: An example of the vertical resolution in altitude of trace gases
measured by UCATS on board the NASA Global Hawk on February 16, 2014 is shown
in Figure 4, from the final phase of the Airborne Tropical TRopopause Experiment or
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Figure 2 The various NASA and NSF platforms operating the NOAA GCs.

for SF, and a simple 2-box model shows that inter-hemispheric exchange time is
fastest in August-September period (Figure 6), in reasonable agreement with several

models (see B. Hall’s GMAC Wednesday talk on SF).

Figure 5 Latitudinal cross sections of SF, from two airborne GCs during ATom-1 and -2.
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Greenhouse Gases (GHGs) include CH,, N,O, SF,, and COS measured by PANTHER.

From CCGG measurements of SF,. (doesn’t include trop-strat
exchange).




